​​​​​​​​南星化工

S.S CHEM

科学家研制出一种控制分子的新材料
来源:网络 | 作者:Bungechem | 发布时间: 1950天前 | 1407 次浏览 | 分享到:
多孔材料含有分子间空间或原子之间的空穴。因为这些空洞, 被称为孔隙, 可以储存甚至分离分子, 这些材料在纳米技术领域具有很大的价值。在工业应用中已经具有不容置疑的重要性, 但仍有改进多孔材料性能的余地。
Porous materials contain intermolecular spaces or cavities between atoms. Because these voids, known as pores, can store and even separate molecules, these materials are of great value in the field of nanotechnology. Already of indisputable importance in industrial applications, there is still room for improving the properties of porous materials.

    多孔材料含有分子间空间或原子之间的空穴。因为这些空洞, 被称为孔隙, 可以储存甚至分离分子, 这些材料在纳米技术领域具有很大的价值。在工业应用中已经具有不容置疑的重要性, 但仍有改进多孔材料性能的余地。
    根据《科学》杂志上发表的一项研究, 科尔多瓦大学无机化学系的研究科学家Rafael Luque和来自华南大学的科学家组成的国际研究小组的其他技术成员在沙特阿拉伯的 KAUST 机构, 成功地开发了一种新型的多孔材料, 具有新的特性和性能, 这将确保在一系列应用中提高性能。
    新材料是一种单晶, 其连续的结晶结构保证了更高的纯度。同时可控制其孔隙度;它的结构, 包括小于两纳米的微孔, 可以通过扩大孔隙, 即大于50纳米的孔隙来增强。
    正如Rafael Luque所指出的, "这意味着, 更大的分子可以舒适地装入孔隙, 以便进行后续的转换或转化。”此外, 用于产生受控孔隙度的程序使用聚苯乙烯珠, "这是一种经济和容易获得的药剂。”
    这项研究可以在各个科学领域中成为一个转折点。正如 Luque 强调的, "我们**次成功地开发了一种具有控制孔隙率的单晶材料;这些双重特性使得这种材料对于在催化和吸附领域的一系列应用具有独特的价值。
    例如,这些发现可能会催化——加速化学反应——更快、更有效、更灵敏地改变分子的大小和形状。新材料也可用于气体 (CO2) 吸附和电子电导的关键应用。


Porous materials contain intermolecular spaces or cavities between atoms. Because these voids, known as pores, can store and even separate molecules, these materials are of great value in the field of nanotechnology. Already of indisputable importance in industrial applications, there is still room for improving the properties of porous materials.

    According to a study published in the journal Science, research scientist Rafael Luque of the Department of Inorganic Chemistry at the University of Cordoba and other technical members of an international research team of scientists from South China University at the KAUST institution in Saudi Arabia, successfully developed A new type of porous material has been developed with new properties and properties that will ensure improved performance in a range of applications.

    The new material is a single crystal whose continuous crystalline structure guarantees higher purity. At the same time, its porosity can be controlled; its structure, including micropores smaller than two nanometers, can be enhanced by enlarging the pores, i.e., pores larger than 50 nanometers.

    As Rafael Luque points out, "This means that larger molecules can fit comfortably into the pores for subsequent conversion or transformation." Furthermore, the procedure used to generate controlled porosity uses polystyrene beads," It's an economical and easily accessible agent."

    This research could be a turning point in various fields of science. As Luque emphasizes, "We have succeeded for the first time in developing a single-crystal material with controlled porosity; these dual properties make this material uniquely valuable for a range of applications in catalysis and adsorption.

    For example, the findings could potentially catalyze -- speed up chemical reactions -- to change the size and shape of molecules faster, more efficiently, and more sensitively. The new material can also be used for key applications in gas (CO2) adsorption and electronic conductivity.